LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Patient-Specific Collision Zones for 4π Trajectory Optimized Radiation Therapy.

Photo by tcooper86 from unsplash

PURPOSE The 4π methodology determines optimized non-coplanar sub arcs for stereotactic radiation therapy which minimize dose to organs-at-risk. Every combination of treatment angle is examined, but some angles are not… Click to show full abstract

PURPOSE The 4π methodology determines optimized non-coplanar sub arcs for stereotactic radiation therapy which minimize dose to organs-at-risk. Every combination of treatment angle is examined, but some angles are not appropriate as a collision would occur between the gantry and the couch or the gantry and the patient. Those combinations of couch and gantry angles are referred to as collision zones. A major barrier to applying 4π to stereotactic body radiation therapy (SBRT) is the unknown shape of the collision zones, which are significant as patients take up a large volume within the 4π sphere. This study presents a system which determines patient-specific collision zones, without additional clinical steps, to enable safe and deliverable non-coplanar treatment trajectories for SBRT patients. METHODS To augment patient's computed tomography (CT) scan, full body scans of patients in treatment position were acquired using an optical scanner. A library of a priori scans (N = 25) was created. Based on the patients treatment position and their body dimensions, a library scan is selected and registered to the CT scan of the patient. Next, a model of the couch and immobilization equipment is added to the patient model. This results in a patient model that is then aligned with a model of the treatment linac in a "virtual treatment room", where both components can be rotated to test for collisions. To test the collision detection algorithm, an end-to-end test was performed using a cranial phantom. The registration algorithm was tested by comparing the registered patient collision zones to those generated by using the patient's matching scan. RESULTS The collision detection algorithm was found to have a 97.80% accuracy, a 99.99% sensitivity and a 99.99% negative predictive value (NPV). Analysis of the registration algorithm determined that a 6 cm buffer was required to achieve a 99.65% mean sensitivity, where a sensitivity of unity is considered to be a requirement for safe treatment delivery. With a 6 cm buffer the mean accuracy was 86.70% and the mean NPV was 99.33%. CONCLUSIONS Our method of determining patient-specific collision zones can be accomplished with minimal user intervention based on an a priori library of body surface scans, thus enabling the safe application of 4π SBRT.

Keywords: patient specific; collision zones; collision; radiation therapy; treatment

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.