LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Technical Note: Commissioning of an ultrasound-compatible surrogate vaginal cylinder for transvaginal ultrasound-based gynecologic high-dose-rate brachytherapy.

Photo by ivanliuhu from unsplash

PURPOSE To provide a comprehensive set of commissioning tests for clinical implementation of three-dimensional transvaginal ultrasound (3D TVUS) as a replacement of computed tomography (CT) for applicator reconstruction in gynecologic… Click to show full abstract

PURPOSE To provide a comprehensive set of commissioning tests for clinical implementation of three-dimensional transvaginal ultrasound (3D TVUS) as a replacement of computed tomography (CT) for applicator reconstruction in gynecologic intracavitary high-dose-rate brachytherapy with a multi-channel vaginal cylinder. METHODS We introduce an ultrasound-compatible "surrogate" vaginal cylinder (SVC) for reconstruction of Elekta's CT-MR Multi Channel Applicator (MCVC) in 3D TVUS. The MCVC is digitized over the SVC in 3DUS using digital library model overlay. Consulting guidelines from various sources (CPQR, GEC-ESTRO, AAPM), we identify and describe three tests specific to commissioning the SVC: 1) verification of SVC outer dimensions, 2) source position accuracy of MCVC digitization over the SVC in 3D TVUS, and 3) MRI/US registration error. RESULTS The SVC outer dimensions (diameter and A-D marker locations) were well matched to the MCVC, however a 0.6 mm discrepancy in length between cylinder tips was observed. Source position accuracy was within 1 mm (tolerance recommended by CPQR) when reconstructing the MCVC in 3D TVUS. Dice similarity coefficients and target registration error for MRI/3D TVUS registration was similar to MRI/CT registration, which is the clinical standard. CONCLUSIONS These commissioning tests are performed using institutional equipment but provide the framework for any practitioners to repeat in their own setup, to demonstrate safe adoption of the 3D TVUS system for patient treatments. We demonstrate that MRI/US-based workflow achieves similar source position accuracy and image registration error as standard MRI/CT, which is consistent with standard tolerances. This is a critical step towards replacement of CT with US in gynecologic high-dose-rate brachytherapy treatments with the MCVC. This article is protected by copyright. All rights reserved.

Keywords: cylinder; tvus; vaginal cylinder; rate brachytherapy; dose rate; high dose

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.