LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Technical note: Evaluation of Artificial 120-kilovolt computed tomography images for radiation therapy applications.

Photo from wikipedia

PURPOSE The purpose of this work is to evaluate the scaled CT number accuracy of an artificial 120 kV reconstruction technique based on phantom experiments in the context of radiation… Click to show full abstract

PURPOSE The purpose of this work is to evaluate the scaled CT number accuracy of an artificial 120 kV reconstruction technique based on phantom experiments in the context of radiation therapy planning. METHODS An abdomen-shaped electron density phantom was scanned on a clinical CT scanner capable of artificial 120 kV reconstruction using different tube potentials from 70 kV to 150 kV. A series of tissue equivalent phantom inserts (lung, adipose, breast, solid water, liver, inner bone, 30%/50% CaCO3, cortical bone) were placed inside the phantom. Images were reconstructed using a conventional quantitative reconstruction kernel as well as the artificial 120 kV reconstruction kernel. Scaled CT numbers of inserts were measured from images acquired at different kVs and compared with those acquired at 120 kV, which were deemed as the ground truth. The relative error was quantified as the percentage deviation of scaled CT numbers acquired at different tube potentials from their ground truth values acquired at 120 kV. RESULTS Scaled CT numbers measured from images reconstructed using the conventional reconstruction demonstrated a strong kV-dependence. The relative error in scaled CT number ranged from 0.6% (liver insert) to 31.1% (cortical bone insert). The artificial 120 kV reconstruction reduced the kV-dependence, especially for bone tissues. The relative error in scaled CT number was reduced to 0.4% (liver insert) and 2.6% (30% CaCO3 insert) using this technique. When tube potential selection was limited to the range of 90 kV to 150 kV, the relative error was further restrained to <1.2% for all tissue types. CONCLUSION Phantom results demonstrated that using the artificial 120 kV technique, it was feasible to acquire raw projection data at a desired tube potential and then reconstruct images with scaled CT numbers comparable to those obtained directly at 120 kV. In radiotherapy applications, this technique may allow optimization of tube potential without complicating clinical workflow by eliminating the necessity of maintaining multiple sets of CT calibration curves. This article is protected by copyright. All rights reserved.

Keywords: relative error; radiation therapy; reconstruction; artificial 120; scaled numbers; 120 reconstruction

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.