LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organ-level internal dosimetry for intra-hepatic-arterial administration of 99m Tc-macroaggregated albumin.

Photo by smallcamerabigpictures from unsplash

PURPOSE There are no published data on organ doses following intra-hepatic-arterial administration of 99m Tc-macroaggregated-albumin (IHA 99m Tc-MAA) routinely used in 90 Y-radioembolization-treatment planning to assess intra- and extra-hepatic depositions… Click to show full abstract

PURPOSE There are no published data on organ doses following intra-hepatic-arterial administration of 99m Tc-macroaggregated-albumin (IHA 99m Tc-MAA) routinely used in 90 Y-radioembolization-treatment planning to assess intra- and extra-hepatic depositions and calculate lung-shunt-fraction (LSF). We propose a method to model the organ doses following IHA 99m Tc-MAA that incorporates three in vivo constituent biodistributions, the 99m Tc-MAA that escape the liver due to LSF, and the 99m Tc-MAA disassociation fraction (DF). METHODS The potential in vivo biodistributions for IHA 99m Tc-MAA are: Liver-Only MAA with all activity sequestered in the liver (LSF = 0&DF = 0), Intravenous MAA with all activity transferred intravenously as 99m Tc-MAA (LSF = 1&DF = 0), and Intravenous Pertechnetate with all activity is transferred intravenously as 99m Tc-pertechnetate (LSF = 0&DF = 1). Organ doses for Liver-Only MAA were determined using OLINDA/EXM 2.2, where liver was modeled as the source organ containing 99m Tc-MAA, while those for Intravenous MAA and Intravenous Pertechnetate were from ICRP 128. Organ doses for the general case can be determined as a weighted-linear-combination of the three constituent biodistributions depending on the LSF and DF. The maximum-dose scenario was modeled by selecting the highest dose rate for each organ amongst the three constituent cases. RESULTS For Liver-Only MAA, the liver as source organ received the highest dose at 98.6 and 126 mGy/GBq for the Adult Male and Adult Female phantoms, respectively; all remaining organs received <27 and <32 mGy/GBq. For Intravenous MAA, the lung as source organ received the highest dose at 66 and 97 mGy/GBq; all remaining organs received <16 and <21 mGy/GBq. The organ with the highest dose for Intravenous Pertechnetate was the upper-large-intestinal wall at 56 and 73 mGy/GBq; all remaining organs received <26 and <34 mGy/GBq. The liver and lung doses for the maximum-dose scenario with 5 mCi (185 MBq) 99m Tc-MAA were estimated at 18.2 and 12.2 mGy, and 23.3 and 17.9 mGy, for the Adult Male and Adult Female phantoms, respectively. CONCLUSION Organ dose estimates following IHA 99m Tc-MAA based on constituent biodistribution models and patient-specific LSF and DF values have been derived. Liver and lung were the organs with highest dose, receiving at most 15 - 25 mGy in the maximum-dose scenario, following 5 mCi IHA 99m Tc-MAA. This article is protected by copyright. All rights reserved.

Keywords: organ doses; iha 99m; 99m maa; mgy gbq; maa; highest dose

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.