LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental helium-beam radiography with a high-energy beam: Water-equivalent thickness calibration and first image-quality results.

Photo from wikipedia

PURPOSE A clinical implementation of ion-beam radiography (iRad) is envisaged to provide a method for on-couch verification of ion-beam treatment plans. The aim of this work is to introduce and… Click to show full abstract

PURPOSE A clinical implementation of ion-beam radiography (iRad) is envisaged to provide a method for on-couch verification of ion-beam treatment plans. The aim of this work is to introduce and evaluate a method for quantitative water-equivalent thickness (WET) measurements for a specific helium-ion imaging system for WETs that are relevant for imaging thicker body parts in the future. METHODS Helium-beam radiographs (αRads) are measured at the Heidelberg Ion-beam Therapy Center (HIT) with an initial beam energy of 239.5 MeV/ u. An imaging system based on three pairs of thin silicon pixel detectors is used for ion path reconstruction and measuring the energy deposition (dE) of each particle behind the object to be imaged. The dE behind homogeneous plastic blocks is related to their well-known WETs between 280.6mm and 312.6 mm with a calibration curve that is created by fitting the measured data points. The quality of the quantitative WET measurements is determined by the uncertainty of the measured WET of a single ion (single-ion WET precision) and the deviation of a measured WET value to the well-known WET (WET accuracy). Subsequently, the fitted calibration curve is applied to an energy deposition radiograph of a phantom with a complex geometry. The spatial resolution (modulation transfer function at 10% (MTF10% )) and WET accuracy (mean absolute percentage difference (MAPD)) of the WET map, are determined. RESULTS In the optimal imaging WET-range from ∼  280 mm to 300 mm, the fitted calibration curve reached a mean single-ion WET precision of 1.55 ± 0.00%. Applying the calibration to an ion radiograph (iRad) of a more complex WET distribution, the spatial resolution was determined to be MTF10% = 0.49 ± 0.03 lp/mm and the WET accuracy was assessed as MAPD to 0.21%. CONCLUSIONS Using a beam energy of 239.5MeV/ u and the proposed calibration procedure, quantitative αRads of WETs between ∼  280mm to 300 mm can be measured and show high potential for clinical use. The proposed approach with the resulting image qualities encourages further investigation towards the clinical application of helium-beam radiography. This article is protected by copyright. All rights reserved.

Keywords: wet; beam radiography; beam; calibration; energy; ion

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.