LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spot-scanning hadron arc (SHArc) therapy: A proof of concept using single and multi-ion strategies with helium, carbon, oxygen and neon ions.

Photo from wikipedia

PURPOSE To present particle arc therapy treatments using single and multi-ion therapy optimization strategies with helium (4 He), carbon (12 C), oxygen (16 O) and neon (20 Ne) ion beams.… Click to show full abstract

PURPOSE To present particle arc therapy treatments using single and multi-ion therapy optimization strategies with helium (4 He), carbon (12 C), oxygen (16 O) and neon (20 Ne) ion beams. METHODS AND MATERIALS An optimization procedure and workflow were devised for spot-scanning hadron arc therapy (SHArc) treatment planning in the PRECISE (PaRticle thErapy using single and Combined Ion optimization StratEgies) treatment planning system (TPS). Physical and biological beam models were developed for helium, carbon, oxygen and neon ions via FLUKA MC simulation. SHArc treatments were optimized using both single ion (12 C, 16 O, or 20 Ne) and multi-ion therapy (16 O+4 He or 20 Ne+4 He) applying variable relative biological effectiveness (RBE) modeling using a modified microdosimetric kinetic model (mMKM) with (α/β)x values of 2Gy, 5Gy and 3.1Gy respectively, for glioblastoma, pancreatic adenocarcinoma, and prostate adenocarcinoma patient cases. Dose, effective dose, linear energy transfer (LET) and RBE were computed with the GPU-accelerated dose engine FRoG and dosimetric/biophysical attributes were evaluated in the context of conventional particle and photon-based therapies (e.g., volumetric modulated arc therapy [VMAT]). RESULTS All SHArc plans met the target optimization goals (3GyRBE) and demonstrated increased target conformity and substantially lower low-dose bath to surrounding normal tissues than VMAT. SHArc plans using a single ion species (12 C, 16 O, or 20 Ne) exhibited favorable LET distributions with the highest-LET components centralized in the target volume, with values ranging from ∼80-170keV/μm, ∼130-220keV/μm and ∼180-350keV/μm, for 12 C, 16 O, or 20 Ne, respectively, exceeding mean target LET of conventional particle therapy (12 C:∼60, 16 O:∼78 20 Ne:∼100 keV/μm). Multi-ion therapy with SHArc delivery (SHArcMIT ) provided a similar level of target LET enhancement as SHArc compared to conventional planning, however, with additional benefits of homogenous physical dose and RBE distributions. CONCLUSION Here, we demonstrate that arc delivery of light and heavy ion beams, using either a single ion species (12 C, 16 O, or 20 Ne) or combining two ions in a single fraction (16 O+4 He or 20 Ne+4 He), affords enhanced physical and biological distributions (e.g., LET) compared with conventional delivery with photons or particle beams. SHArc marks the first single and multi-ion arc therapy treatment optimization approach using light and heavy ions. This article is protected by copyright. All rights reserved.

Keywords: using single; therapy; multi ion; single multi; sharc; ion

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.