LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-shot T2 mapping via multi-echo-train multiple overlapping-echo detachment planar imaging and multi-task deep learning.

Photo from wikipedia

BACKGROUND Quantitative magnetic resonance imaging provides robust biomarkers in clinics. Nevertheless, the lengthy scan time reduces imaging throughput and increases the susceptibility of imaging results to motion. In this context,… Click to show full abstract

BACKGROUND Quantitative magnetic resonance imaging provides robust biomarkers in clinics. Nevertheless, the lengthy scan time reduces imaging throughput and increases the susceptibility of imaging results to motion. In this context, a single-shot T2 mapping method based on multiple overlapping-echo detachment (MOLED) planar imaging was presented, but the relatively small echo time range limits its accuracy, especially in tissues with large T2 . PURPOSE In this work we proposed a novel single-shot method, Multi-Echo-Train Multiple OverLapping-Echo Detachment (METMOLED) planar imaging, to accommodate a large range of T2 quantification without additional measurements to rectify signal degeneration arisen from refocusing pulse imperfection. METHODS Multiple echo-train techniques were integrated into the MOLED sequence to capture larger TE information. Maps of T2 , B1 , and spin density were reconstructed synchronously from acquired METMOLED data via multi-task deep learning. A typical U-Net was trained with 3000/600 synthetic data with geometric/brain patterns to learn the mapping relationship between METMOLED signals and quantitative maps. The refocusing pulse imperfection was settled through the inherent information of METMOLED data and auxiliary tasks. RESULTS Experimental results on the digital brain (structural similarity (SSIM) index = 0.975/0.991/0.988 for MOLED/METMOLED-2/METMOLED-3, hyphenated number denotes the number of echo-trains), physical phantom (the slope of linear fitting with reference T2 map = 1.047/1.017/1.006 for MOLED/METMOLED-2/METMOLED-3), and human brain (Pearson's correlation coefficient (PCC) = 0.9581/0.9760/0.9900 for MOLED/METMOLED-2/METMOLED-3) demonstrated that the METMOLED improved the quantitative accuracy and the tissue details in contrast to the MOLED. These improvements were more pronounced in tissues with large T2 and in application scenarios with high temporal resolution (PCC = 0.8692/0.9465/0.9743 for MOLED/METMOLED-2/METMOLED-3). Moreover, the METMOLED could rectify the signal deviations induced by the non-ideal slice profiles of refocusing pulses without additional measurements. A preliminary measurement also demonstrated that the METMOLED is highly repeatable (mean coefficient of variation (CV) = 1.65%). CONCLUSIONS METMOLED breaks the restriction of echo-train length to TE and implements unbiased T2 estimates in an extensive range. Furthermore, it corrects the effect of refocusing pulse inaccuracy without additional measurements or signal post-processing, thus retaining its single-shot characteristic. This technique would be beneficial for accurate T2 quantification. This article is protected by copyright. All rights reserved.

Keywords: echo detachment; multiple overlapping; single shot; echo train; overlapping echo

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.