LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synchronized high-speed scintillation imaging of proton beams, generated by a gantry-mounted synchrocyclotron, on a pulse-by-pulse basis.

Photo by indiratjokorda from unsplash

BACKGROUND With the emergence of more complex and novel proton delivery techniques, there is a need for quality assurance (QA) tools with high spatiotemporal resolution to conveniently measure the spatial… Click to show full abstract

BACKGROUND With the emergence of more complex and novel proton delivery techniques, there is a need for quality assurance (QA) tools with high spatiotemporal resolution to conveniently measure the spatial and temporal properties of the beam. In this context, scintillation-based dosimeters, if synchronized with the radiation beam and corrected for ionization quenching, are appealing. PURPOSE To develop a synchronized high-speed scintillation imaging system for characterization and verification of the proton therapy beams on a pulse-by-pulse basis. MATERIALS AND METHODS A 30 cm × 30 cm × 5 cm block of BC-408 plastic scintillator placed in a light-tight housing was irradiated by proton beams generated by a Mevion S250TM proton therapy synchrocyclotron. A high-speed camera system, placed perpendicular to the beam direction and facing the scintillator, was synchronized to the accelerator's pulses to capture images. Opening and closing of the camera's shutter was controlled by setting a proper time delay and exposure time, respectively. The scintillation signal was recorded as a set of two-dimensional (2D) images. Empirical correction factors were applied to the images to correct for the non-uniformity of the pixel sensitivity and quenching of the scintillator. Proton range and modulation were obtained from the corrected images. RESULTS The camera system was able to capture all data on a pulse-by-pulse basis at a rate of ∼504 frames per second. The applied empirical correction method for ionization quenching was effective and the corrected composite image provided a 2D map of dose distribution. The measured range (depth of distal 90%) through scintillation imaging agreed within 1.2 mm with that obtained from ionization chamber measurement. CONCLUSION A high-speed camera system capable of capturing scintillation signals from individual proton pulses was developed. The scintillation imaging system is promising for rapid proton beam characterization and verification. This article is protected by copyright. All rights reserved.

Keywords: scintillation; high speed; pulse pulse; scintillation imaging; proton

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.