LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Auto-detection of necessity for MRI-guided online adaptive replanning using a machine learning classifier.

Photo from wikipedia

PURPOSE MRI-guided adaptive radiation therapy (MRgART), particularly daily online adaptive replanning (OLAR) can substantially improve radiation therapy delivery, however it can be labor-intensive and time-consuming. Currently, the decision to perform… Click to show full abstract

PURPOSE MRI-guided adaptive radiation therapy (MRgART), particularly daily online adaptive replanning (OLAR) can substantially improve radiation therapy delivery, however it can be labor-intensive and time-consuming. Currently, the decision to perform OLAR for a treatment fraction is determined subjectively. In this work, we develop a machine learning algorithm based on structural similarity index measure (SSIM) and change in entropy to quickly and objectively determine whether OLAR is necessary for a daily MRI set. METHODS A total of 109 daily MRI sets acquired on a 1.5T MR-Linac during MRgART for 22 pancreatic cancer patients each treated with five fractions were retrospectively analyzed. For each daily MRI set, OLAR and reposition (No-OLAR) plans were created and the superior plan with the daily fraction determined per clinical dose-volume criteria. SSIM and entropy maps were extracted from each daily MRI set, with respective to its reference (e.g., dry-run) MRI in the region enclosed by 50-100% isodose surfaces. A total of six common features were extracted from SSIM maps. Pearson's rank correlation coefficient was utilized to rule-out redundant SSIM features. A t-test was used to determine significant SSIM features which were combined with the change in entropy to develop ensemble machine classifier with 5-fold cross validation. The performance of the classifier was evaluated using the area under curve (AUC) of the receiver operating characteristic (ROC) curve. RESULTS A machine learning classifier model using two SSIM features (mean and full width at half maximum) and change in entropy was determined to be able to significantly discriminate between No-OLAR and OLAR groups. The obtained machine learning ensemble classifier can predict OLAR necessity with a cross validated AUC of 0.93. Misclassification was found primarily for No-OLAR cases with dosimetric plan quality closely comparable to the corresponding OLAR plans, thus, are not a major practical concern. CONCLUSION A machine learning classifier based on simple first-order image features, i.e., SSIM features and change in entropy, was developed to determine when OLAR is necessary for a daily MRI set with practical acceptable prediction accuracy. This classifier may be implemented in the MRgART process to automatically and objectively determine if OLAR is required following daily MRI. This article is protected by copyright. All rights reserved.

Keywords: learning classifier; machine; machine learning; daily mri; mri; mri guided

Journal Title: Medical physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.