LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of supervised-learning approaches for designing a channelized observer for image quality assessment in CT.

Photo from wikipedia

BACKGROUND The current paradigm for evaluating computed tomography (CT) system performance relies on a task-based approach. As the Hotelling observer (HO) provides an upper bound of observer performances in specific… Click to show full abstract

BACKGROUND The current paradigm for evaluating computed tomography (CT) system performance relies on a task-based approach. As the Hotelling observer (HO) provides an upper bound of observer performances in specific signal detection tasks, the literature advocates HO use for optimization purposes. However, computing the HO requires calculating the inverse of the image covariance matrix, which is often intractable in medical applications. As an alternative, dimensionality reduction has been extensively investigated to extract the task-relevant features from the raw images. This can be achieved by using channels, which yields the channelized -HO (CHO). The channels are only considered efficient when the channelized observer (CO) can approximate its unconstrained counterpart. Previous work has demonstrated that supervised learning-based methods can usually benefit CO design, either for generating efficient channels using partial least squares (PLS) or for replacing the Hotelling detector with machine-learning (ML) methods. PURPOSE Here we investigated the efficiency of a supervised ML -algorithm used to design a CO for predicting the performance of unconstrained HO. The ML -algorithm was applied either i) in the estimator for dimensionality reduction, or ii) in the detector function. METHODS A channelized support vector machine (CSVM) was employed and compared against the CHO in terms of ability to predict HO performances. Both the CSVM and the CHO were estimated with channels derived from the singular value decomposition (SVD) of the system operator, principal component analysis (PCA), and PLS. The huge variety of regularization strategies proposed by CT system vendors for statistical image reconstruction (SIR) make the generalization capability of an observer a key point to consider upfront of implementation in clinical practice. To evaluate the generalization properties of the observers, we adopted a 2-step testing process: 1) achieved with the same regularization strategy (as in the training phase), 2) performed using different reconstruction properties. We generated simulated- signal-known-exactly / background-known-exactly (SKE / BKE) tasks in which different noise structures were generated using Markov random field (MRF) regularizations using either a Green or a quadratic, function. RESULTS The CSVM outperformed the CHO for all types of channels and regularization strategies. Furthermore, even though both COs generalized well to images reconstructed with the same regularization strategy as the images considered in the training phase, the CHO failed to generalize to images reconstructed differently whereas the CSVM managed to successfully generalize. Lastly, the proposed CSVM observer used with PCA channels outperformed the CHO with PLS channels while using a smaller training data-set. CONCLUSION These results argue for introducing the supervised-learning paradigm in the detector function rather than in the operator of the channels when designing a CO to provide an accurate estimate of HO performance. The CSVM with PCA channels proposed here could be used as a surrogate for HO in image quality assessment. This article is protected by copyright. All rights reserved.

Keywords: image quality; csvm; supervised learning; quality assessment; channelized observer; image

Journal Title: Medical physics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.