LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fraction optimization for hybrid proton-photon treatment planning.

Photo from wikipedia

BACKGROUND Hybrid proton-photon radiotherapy (RT) can provide better plan quality than proton or photon only RT, in terms of robustness of target coverage and sparing of organs-at-risk (OAR). PURPOSE This… Click to show full abstract

BACKGROUND Hybrid proton-photon radiotherapy (RT) can provide better plan quality than proton or photon only RT, in terms of robustness of target coverage and sparing of organs-at-risk (OAR). PURPOSE This work develops a hybrid treatment planning method that can optimize the number of proton and photon fractions as well as proton and photon plan variables, so that the hybrid plans can be clinically delivered day-to-day using either proton or photon machine. METHODS In the new hybrid treatment planning method, the total dose distribution (sum of proton dose and photon dose) is optimized for robust target coverage and optimal OAR sparing, by jointly optimizing proton spots and photon fluences, while the target dose uniformity is also enforced individually on both proton dose and photon dose, so that the hybrid plans can be separately and robustly delivered on proton or photon machine. To ensure the target dose uniformity for proton and photon plans, the number of proton and photon fractions is explicitly modeled and optimized, so that the target dose for proton and photon dose components is constrained to be a constant fraction of the total prescription dose while the plan quality based on total dose is optimized. The feasibility of hybrid planning using the proposed method is validated with representative clinical cases including abdomen, lung, head-and-neck (HN), and brain. RESULTS For all cases, hybrid plans provided better overall plan quality and OAR sparing than proton-only or photon-only plans, better target dose uniformity and robustness than proton-only plans, quantified by treatment planning objectives and dosimetric parameters. Moreover, for HN and brain cases, hybrid plans also had better target coverage than photon-only plans. CONCLUSIONS We have developed a new hybrid treatment planning method that optimizes number of proton and photon fractions as well as proton spots and photon fluences, for generating hybrid plans that can be separately and robustly delivered on proton or photon machines. Preliminary results have demonstrated that hybrid plans generated by the new method have better plan quality than proton-only or photon-only plans. This article is protected by copyright. All rights reserved.

Keywords: proton photon; photon; hybrid plans; treatment planning

Journal Title: Medical physics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.