Reproductive failure is the main reason for culling females in swine herds and is both a financial and sustainability issue. Because reproductive traits are complex and lowly to moderately heritable,… Click to show full abstract
Reproductive failure is the main reason for culling females in swine herds and is both a financial and sustainability issue. Because reproductive traits are complex and lowly to moderately heritable, genomic selection within populations can achieve substantial genetic gain in reproductive efficiency. A better understanding of the physiological components affecting the expression of these traits will facilitate greater understanding of the genes affecting reproductive traits and is necessary to improve and optimize management strategies to maximize reproductive success of gilts and sows. Large-scale genotyping with single-nucleotide polymorphism (SNP) arrays are used for genome-wide association studies (GWAS) and have facilitated identification of positional candidate genes. Transcriptomic data can be used to weight SNP for GWAS and could lead to previously unidentified candidate genes. Resequencing and fine mapping of candidate genes are necessary to identify putative functional variants and some of these have been incorporated into new genotyping arrays. Sequence imputation and genotype by sequence are newer strategies that could reveal novel functional mutations. In this study, these approaches are discussed. Advantages and limitations are highlighted where additional research is needed.
               
Click one of the above tabs to view related content.