PURPOSE MRI at ultra-high fields in the human body is highly challenging and requires lengthy calibration times to compensate for spatially heterogeneous B 1 + profiles. This study investigates the… Click to show full abstract
PURPOSE MRI at ultra-high fields in the human body is highly challenging and requires lengthy calibration times to compensate for spatially heterogeneous B 1 + profiles. This study investigates the feasibility of using pre-computed universal pulses for calibration-free homogeneous 3D flip angle distribution in the human heart at 7T. METHODS Twenty-two channel-wise 3D B 1 + data sets were acquired under free-breathing in 19 subjects to generate a library for an offline universal pulse (UP) design (group 1: 12 males [M] and 7 females [F], 21-66 years, 19.8-28.3 kg/m2 ). Three of these subjects (2M/1F, 21-33 years, 20.8-23.6 kg/m2 ) were re-scanned on different days. A 4kT-points UP optimized for the 22 channel-wise 3D B 1 + data sets in group 1 (UP22-4kT) is proposed and applied at 7T in 9 new and unseen subjects (group 2: 4M/5F, 25-56 years, 19.5-35.3 kg/m2 ). Multiple tailored and universal static and dynamic parallel-transmit (pTx) pulses were designed and evaluated for different permutations of the B 1 + data sets in group 1 and 2. RESULTS The proposed UP22-4kT provides low B 1 + variation in all subjects, seen and unseen, without severe signal drops. Experimental data at 7T acquired with UP22-4kT shows comparable image quality as data acquired with tailored-4kT pulses and demonstrates successful calibration-free pTx of the human heart. CONCLUSION UP22-4kT allows for calibration-free homogeneous flip angle distributions across the human heart at 7T. Large inter-subject variations because of sex, age, and body mass index are well tolerated. The proposed universal pulse removes the need for lengthy (10-15 min) calibration scans and therefore has the potential to bring body imaging at 7T closer to the clinical application.
               
Click one of the above tabs to view related content.