LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging.

Photo from wikipedia

PURPOSE To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and… Click to show full abstract

PURPOSE To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. RESULTS The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. CONCLUSIONS The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.

Keywords: reconstruction; spiral projection; resolution; subspace reconstruction; brain; subspace

Journal Title: Magnetic resonance in medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.