Simultaneous scalp electroencephalography and functional magnetic resonance imaging (EEG‐fMRI) enable noninvasive assessment of brain function with high spatial and temporal resolution. However, at ultra‐high field, the data quality of both… Click to show full abstract
Simultaneous scalp electroencephalography and functional magnetic resonance imaging (EEG‐fMRI) enable noninvasive assessment of brain function with high spatial and temporal resolution. However, at ultra‐high field, the data quality of both modalities is degraded by mutual interactions. Here, we thoroughly investigated the radiofrequency (RF) shielding artifact of a state‐of‐the‐art EEG‐fMRI setup, at 7 T, and design a practical solution to limit this issue.
               
Click one of the above tabs to view related content.