To evaluate an iterative learning approach for enhanced performance of robust artificial‐neural‐networks for k‐space interpolation (RAKI), when only a limited amount of training data (auto‐calibration signals [ACS]) are available for… Click to show full abstract
To evaluate an iterative learning approach for enhanced performance of robust artificial‐neural‐networks for k‐space interpolation (RAKI), when only a limited amount of training data (auto‐calibration signals [ACS]) are available for accelerated standard 2D imaging.
               
Click one of the above tabs to view related content.