LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive model-based Magnetic Resonance.

Photo from wikipedia

PURPOSE Conventional sequences are static in nature, fixing measurement parameters in advance in anticipation of a wide range of expected tissue parameter values. We set out to design and benchmark… Click to show full abstract

PURPOSE Conventional sequences are static in nature, fixing measurement parameters in advance in anticipation of a wide range of expected tissue parameter values. We set out to design and benchmark a new, personalized approach-termed adaptive MR-in which incoming subject data is used to update and fine-tune the pulse sequence parameters in real time. METHODS We implemented an adaptive, real-time multi-echo (MTE) experiment for estimating T2 s. Our approach combined a Bayesian framework with model-based reconstruction. It maintained and continuously updated a prior distribution of the desired tissue parameters, including T2 , which was used to guide the selection of sequence parameters in real time. RESULTS Computer simulations predicted accelerations between 1.7- and 3.3-fold for adaptive multi-echo sequences relative to static ones. These predictions were corroborated in phantom experiments. In healthy volunteers, our adaptive framework accelerated the measurement of T2 for n-acetyl-aspartate by a factor of 2.5. CONCLUSION Adaptive pulse sequences that alter their excitations in real time could provide substantial reductions in acquisition times. Given the generality of our proposed framework, our results motivate further research into other adaptive model-based approaches to MRI and MRS.

Keywords: magnetic resonance; adaptive model; real time; model; model based

Journal Title: Magnetic resonance in medicine
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.