LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Combined spiroergometry and 31P–MRS of human calf muscle during high‐intensity exercise

Photo by johnarano from unsplash

Simultaneous measurements of pulmonary oxygen consumption (VO2), carbon dioxide exhalation (VCO2) and phosphorus magnetic resonance spectroscopy (31P–MRS) are valuable in physiological studies to evaluate muscle metabolism during specific loads. Therefore,… Click to show full abstract

Simultaneous measurements of pulmonary oxygen consumption (VO2), carbon dioxide exhalation (VCO2) and phosphorus magnetic resonance spectroscopy (31P–MRS) are valuable in physiological studies to evaluate muscle metabolism during specific loads. Therefore, the aim of this study was to adapt a commercially available spirometric device to enable measurements of VO2 and VCO2 whilst simultaneously performing 31P–MRS at 3 T. Volunteers performed intense plantar flexion of their right calf muscle inside the MR scanner against a pneumatic MR‐compatible pedal ergometer. The use of a non‐magnetic pneumotachograph and extension of the sampling line from 3 m to 5 m to place the spirometric device outside the MR scanner room did not affect adversely the measurements of VO2 and VCO2. Response and delay times increased, on average, by at most 0.05 s and 0.79 s, respectively. Overall, we were able to demonstrate a feasible ventilation response (VO2 = 1.05 ± 0.31 L/min; VCO2 = 1.11 ± 0.33 L/min) during the exercise of a single calf muscle, as well as a good correlation between local energy metabolism and muscular acidification (τPCr fast and pH; R2 = 0.73, p < 0.005) and global respiration (τPCr fast and VO2; R2 = 0.55, p = 0.01). This provides improved insights into aerobic and anaerobic energy supply during strong muscular performances.

Keywords: muscle; exercise; 31p mrs; calf muscle

Journal Title: NMR in Biomedicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.