Deuterium (2 H) magnetic resonance imaging is an emerging approach for noninvasively studying glucose metabolism in vivo, which is important for understanding pathogenesis and monitoring the progression of many diseases… Click to show full abstract
Deuterium (2 H) magnetic resonance imaging is an emerging approach for noninvasively studying glucose metabolism in vivo, which is important for understanding pathogenesis and monitoring the progression of many diseases such as tumors, diabetes, and neurodegenerative diseases. However, the synthesis of 2 H-labeled glucose is costly because of the expensive raw substrates and the requirement for extreme reaction conditions, making the 2 H-labeled glucose rather expensive and unaffordable for clinic use. In this study, we present a new deuterated compound, [2,3,4,6,6'-2 H5 ]-D-glucose, with an approximate 10-fold reduction in production costs. The synthesis route uses cheaper raw substrate methyl-α-D-glucopyranoside, relies on mild reaction conditions (80°C), and has higher deuterium labeling efficiency. Magnetic resonance spectroscopy (MRS) and mass spectroscopy experiments confirmed the successful deuterium labeling in the compound. Animal studies demonstrated that the substrate could describe the glycolytic metabolism in a glioma rat model by quantifying the downstream metabolites through 2 H-MRS on an ultrahigh field system. Comparison of the glucose metabolism characteristics was carried out between [2,3,4,6,6'-2 H5 ]-D-glucose and commercial [6,6'-2 H2 ]-D-glucose in the animal studies. This cost-effective compound will help facilitate the clinical translation of deuterium magnetic resonance imaging, and enable this powerful metabolic imaging modality to be widely used in both preclinical and clinical research and applications.
               
Click one of the above tabs to view related content.