LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel minimum weight formulation of topology optimization implemented with reanalysis approach

Photo from wikipedia

In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within… Click to show full abstract

In this paper, we develop an efficient diagonal quadratic optimization formulation for minimum weight design problem subject to multiple constraints. A high‐efficiency computational approach of topology optimization is implemented within the framework of approximate reanalysis. The key point of the formulation is the introduction of the reciprocal‐type variables. The topology optimization seeking for minimum weight can be transformed as a sequence of quadratic program with separable and strictly positive definite Hessian matrix, thus can be solved by a sequential quadratic programming approach. A modified sensitivity filtering scheme is suggested to remove undesirable checkerboard patterns and mesh dependence. Several typical examples are provided to validate the presented approach. It is observed that the optimized structure can achieve lighter weight than those from the established method by the demonstrative numerical test. Considerable computational savings can be achieved without loss of accuracy of the final design for 3D structure. Moreover, the effects of multiple constraints and upper bound of the allowable compliance upon the optimized designs are investigated by numerical examples.

Keywords: optimization; minimum weight; approach; topology; topology optimization

Journal Title: International Journal for Numerical Methods in Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.