LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model order reduction with Galerkin projection applied to nonlinear optimization with infeasible primal‐dual interior point method

Photo from wikipedia

It is not new that model order reduction (MOR) methods are employed in almost all fields of engineering to reduce the processing time of complex computational simulations. At the same… Click to show full abstract

It is not new that model order reduction (MOR) methods are employed in almost all fields of engineering to reduce the processing time of complex computational simulations. At the same time, interior point methods (IPMs), a method to deal with inequality constraint problems (which is little explored in engineering), can be applied in many fields such as plasticity theory, contact mechanics, micromechanics, and topology optimization. In this work, a MOR based in Galerkin projection is coupled with the infeasible primal‐dual IPM. Such research concentrates on how to develop a Galerkin projection in one field with the interior point method; the combination of both methods, coupled with Schur complement, permits to solve this MOR similar to problems without constraints, leading to new approaches to adaptive strategies. Moreover, this research develops an analysis of error from the Galerkin projection related to the primal and dual variables. Finally, this work also suggests an adaptive strategy to alternate the Galerkin projection operator, between primal and dual variable, according to the error during the processing of a problem.

Keywords: galerkin projection; interior point; projection; primal dual; model order

Journal Title: International Journal for Numerical Methods in Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.