When designing a structure or engineering a component, it is crucial to use methods that provide fast and reliable solutions, so that a large number of design options can be… Click to show full abstract
When designing a structure or engineering a component, it is crucial to use methods that provide fast and reliable solutions, so that a large number of design options can be assessed. In this context, the proper generalized decomposition (PGD) can be a powerful tool, as it provides solutions to parametric problems, without being affected by the “curse of dimensionality.” Assessing the accuracy of the solutions obtained with the PGD is still a relevant challenge, particularly when seeking quantities of interest with guaranteed bounds. In this work, we compute compatible and equilibrated PGD solutions and use them in a dual analysis to obtain quantities of interest and their bounds, which are guaranteed. We also use these complementary solutions to compute an error indicator, which is used to drive a mesh adaptivity process, oriented for a quantity of interest. The corresponding solutions have errors that are much lower than those obtained using a uniform refinement or an indicator based on the global error, as the proposed approach focuses on minimizing the error in the quantity of interest.
               
Click one of the above tabs to view related content.