LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D formulation of the deformable discrete element method

Photo from wikipedia

This work presents a 3D extension of the deformable discrete element method (DDEM) developed previously for 2D problems. The 3D formulation employs spherical particles. The particle deformation is made up… Click to show full abstract

This work presents a 3D extension of the deformable discrete element method (DDEM) developed previously for 2D problems. The 3D formulation employs spherical particles. The particle deformation is made up of a global and local deformation mode. The global mode is assumed to be produced by uniform stress due to the contact forces. Particle deformability yields a nonlocal contact model, in which one contact between particles is influenced by contacts with other particles. It also leads to the formation of new contacts in the particle assembly. The DDEM affects the behavior of the granular material at the macroscopic level and gives new possibilities in material modeling by the discrete element method (DEM). The new algorithm is verified on a unconfined uniaxial compression test of a cuboid specimen discretized with equal‐size bonded particles aligned in a simple cubic pattern using an analytical solution. Enhanced modeling capabilities are presented by simulating cylindrical specimens discretized with a nonuniform size of bonded particles. The micro–macro relationships for elastic parameters are obtained. It is shown that the DDEM extends the range of the Poisson's ratio achievable with the DEM. Additional simulations are performed to determine the stability limits of the DDEM.

Keywords: deformable discrete; formulation deformable; discrete element; element method

Journal Title: International Journal for Numerical Methods in Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.