LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On non‐stationary polarization methods in FFT‐based computational micromechanics

Photo by arthurlfranklin from unsplash

Polarization‐type methods are among the fastest solution methods for FFT‐based computational micromechanics. However, their performance depends critically on the choice of the reference material. Only for finitely contrasted materials, optimum‐selection… Click to show full abstract

Polarization‐type methods are among the fastest solution methods for FFT‐based computational micromechanics. However, their performance depends critically on the choice of the reference material. Only for finitely contrasted materials, optimum‐selection strategies are known. This work focuses on adaptive strategies for choosing the reference material, details their efficient implementation, and investigates the computational performance. The case of porous materials is explicitly included. As a byproduct, we introduce a suitable convergence criterion that permits a fair comparison to strain‐based FFT solvers and Eyre–Milton type implementations.

Keywords: fft based; computational micromechanics; polarization; methods fft; non stationary; based computational

Journal Title: International Journal for Numerical Methods in Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.