LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Augmented Lagrangian approach to deriving discontinuous Galerkin methods for nonlinear elasticity problems

Photo from wikipedia

We use the augmented Lagrangian formalism to derive discontinuous Galerkin (DG) formulations for problems in nonlinear elasticity. In elasticity, stress is typically a symmetric function of strain, leading to symmetric… Click to show full abstract

We use the augmented Lagrangian formalism to derive discontinuous Galerkin (DG) formulations for problems in nonlinear elasticity. In elasticity, stress is typically a symmetric function of strain, leading to symmetric tangent stiffness matrices in Newton's method when conforming finite elements are used for discretization. By use of the augmented Lagrangian framework, we can also obtain symmetric tangent stiffness matrices in DG methods. We suggest two different approaches and give examples from plasticity and from large deformation hyperelasticity.

Keywords: discontinuous galerkin; elasticity; lagrangian approach; nonlinear elasticity; augmented lagrangian; approach deriving

Journal Title: International Journal for Numerical Methods in Engineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.