LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Matrix‐free crosshole elliptical‐anisotropy tomography: parametrization analysis and ground‐penetrating radar applications in carbonates

Photo from wikipedia

ABSTRACT A novel traveltime tomographic approach is applied to anisotropic media, limited to 2D geometry at present. A general anisotropic Eikonal solver based on a discontinuous Galerkin method is combined… Click to show full abstract

ABSTRACT A novel traveltime tomographic approach is applied to anisotropic media, limited to 2D geometry at present. A general anisotropic Eikonal solver based on a discontinuous Galerkin method is combined with an efficient adjoint formulation for multiparameter least‐squares inversion. This new approach is tested considering synthetic crosshole ground‐penetrating radar data. The configuration of the ground‐penetrating radar survey is inspired by a real experiment done on layered carbonate media disturbed by the presence of a deep gallery, which induces a localized high‐electromagnetic contrast. This made it possible to define a well‐adapted general workflow in this context. We notably show that, under the elliptical anisotropic assumption, the parametrization based on vertical and horizontal velocities provides less biased results than those obtained by considering the vertical velocity and the relevant Thomsen parameter e. The initial vertical and horizontal velocity models are identical and built from an isotropic inversion. The presence of the high‐contrast gallery generates a weak diffraction pattern, which is taken into account in our tomography approach. It also creates potential artefacts due to the model discretization, which are mitigated by a model regularization term within the definition of the misfit function. This general workflow is then applied to the real experiment dataset. The vertical and horizontal velocity images provide similar structures as those previously obtained by isotropic full waveform inversion, complemented by an image of a rather weak elliptical anisotropy.

Keywords: elliptical anisotropy; penetrating radar; parametrization; ground penetrating

Journal Title: Near Surface Geophysics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.