LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Monitoring Hydrogenation Reactions using Benchtop 2D NMR with Extraordinary Sensitivity and Spectral Resolution

Photo from wikipedia

Abstract Low‐field benchtop nuclear magnetic resonance (BT‐NMR) spectrometers with Halbach magnets are being increasingly used in science and industry as cost‐efficient tools for the monitoring of chemical reactions, including hydrogenation.… Click to show full abstract

Abstract Low‐field benchtop nuclear magnetic resonance (BT‐NMR) spectrometers with Halbach magnets are being increasingly used in science and industry as cost‐efficient tools for the monitoring of chemical reactions, including hydrogenation. However, their use of low‐field magnets limits both resolution and sensitivity. In this paper, we show that it is possible to alleviate these two problems through the combination of parahydrogen‐induced polarization (PHIP) and fast correlation spectroscopy with time‐resolved non‐uniform sampling (TR‐NUS). PHIP can enhance NMR signals so that substrates are easily detectable on BT‐NMR spectrometers. The interleaved acquisition of one‐ and two‐dimensional spectra with TR‐NUS provides unique insight into the consecutive moments of hydrogenation reactions, with a spectral resolution unachievable in a standard approach. We illustrate the potential of the technique with two examples: the hydrogenation of ethylphenyl propiolate and the hydrogenation of a mixture of two substrates – ethylphenyl propiolate and ethyl 2‐butynoate.

Keywords: resolution; nmr; hydrogenation; hydrogenation reactions; sensitivity; spectral resolution

Journal Title: ChemistryOpen
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.