Abstract The spin polarization of carbon nanomaterials is crucial to design spintronic devices. In this paper, the first‐principles is used to study the electronic properties of two defect asymmetric structures,… Click to show full abstract
Abstract The spin polarization of carbon nanomaterials is crucial to design spintronic devices. In this paper, the first‐principles is used to study the electronic properties of two defect asymmetric structures, Cap‐(9, 0)‐Def [6, 6] and Cap‐(9, 0)‐Def [5, 6]. We found that the ground state of Cap‐(9, 0)‐Def [6, 6] is sextet and the ground state of Cap‐(9, 0)‐Def [5, 6] is quartet, and the former has a lower energy. In addition, compared with Cap‐(9, 0) CNTs, the C adatom on C30 causes spin polarization phenomenon and Cap‐(9, 0)‐Def [6, 6] has more spin electrons than Cap‐(9, 0)‐Def [5, 6] structure. Moreover, different adsorb defects reveal different electron accumulation. This finding shows that spin polarization of the asymmetric structure can be adjusted by introducing adatom defects.
               
Click one of the above tabs to view related content.