LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supramolecular Arrangement and DFT analysis of Zinc(II) Schiff Bases: An Insight towards the Influence of Compartmental Ligands on Binding Interaction with Protein

Photo by docasamentos from unsplash

Abstract We report, for the first time, a detailed crystallographic study of the supramolecular arrangement for a set of zinc(II) Schiff base complexes containing the ligand 2,6‐bis((E)‐((2‐(dimethylamino)ethyl)imino)methyl)‐4‐R‐phenol], where R=methyl/tert‐butyl/chloro. The… Click to show full abstract

Abstract We report, for the first time, a detailed crystallographic study of the supramolecular arrangement for a set of zinc(II) Schiff base complexes containing the ligand 2,6‐bis((E)‐((2‐(dimethylamino)ethyl)imino)methyl)‐4‐R‐phenol], where R=methyl/tert‐butyl/chloro. The supramolecular study acts as a pre‐screening tool for selecting the compartmental ligand R of the Schiff base for effective binding with a targeted protein, bovine serum albumin (BSA). The most stable hexagonal arrangement of the complex [Zn−Me] (R=Me) stabilises the ligand with the highest FMO energy gap (ΔE=4.22 eV) and lowest number of conformations during binding with BSA. In contrast, formation of unstable 3D columnar vertebra for [Zn−Cl] (R=Cl) tend to activate the system with lowest FMO gap (3.75 eV) with highest spontaneity factor in molecular docking. Molecular docking analyses reported in terms of 2D LigPlot+ identified site A, a cleft of domains IB, IIIA and IIIB, as the most probable protein binding site of BSA. Arg144, Glu424, Ser428, Ile455 and Lys114 form the most probable interactions irrespective of the type of compartmental ligands R of the Schiff base whereas Arg185, Glu519, His145, Ile522 act as the differentiating residues with ΔG=−7.3 kcal mol−1.

Keywords: arrangement; compartmental ligands; schiff; supramolecular arrangement; zinc schiff

Journal Title: ChemistryOpen
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.