LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Revealing the Nanoarchitectonics of Amyloid β‐Aggregation on Two‐Dimensional Biomimetic Membranes by Surface‐Enhanced Infrared Absorption Spectroscopy

Photo from wikipedia

Abstract The in vivo folding of amyloid β (Aβ) is influenced by many factors among which biomembrane interfaces play an important role. Here, using surface‐enhanced infrared absorption (SEIRA) spectroscopy and atomic… Click to show full abstract

Abstract The in vivo folding of amyloid β (Aβ) is influenced by many factors among which biomembrane interfaces play an important role. Here, using surface‐enhanced infrared absorption (SEIRA) spectroscopy and atomic force microscopy (AFM), the adsorption, structure, and morphology of Aβ42 aggregating on different two‐dimensional interfaces were investigated. Results show that interfaces facilitate the aggregation of Aβ42 and are conducive to the formation of homogeneous aggregates, while the aggregates vary on different interfaces. On hydrophobic interfaces, strong hydrophobic interactions with the C‐terminus of Aβ42 result in the formation of small oligomers with a small proportion of the β‐sheet structure. On hydrophilic interfaces, hydrogen‐bonding interactions and electrostatic interactions promote the formation of large aggregate particles with β‐sheet structure. The hydration repulsion plays an important role in the interaction of Aβ42 with interfaces. These findings help to understand the nature of Aβ42 adsorption and aggregation on the biomembrane interface and the origin of heterogeneity and polymorphism of Aβ42 aggregates.

Keywords: aggregation; two dimensional; spectroscopy; surface enhanced; enhanced infrared; infrared absorption

Journal Title: ChemistryOpen
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.