LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving the hydrophilic and antifouling properties of poly(vinyl chloride) membranes by atom transfer radical polymerization grafting of poly(ionic liquid) brushes

Photo from wikipedia

In this study, poly(1-butyl-3-vinylimidazolium bromide) (PBVIm-Br) was grafted onto the poly(vinyl chloride) (PVC) membrane surface via a 2-step atom transfer radical polymerization (ATRP) reaction. Poly(2-hydroxyethylmethacrylate) (PHEMA) was grafted onto the… Click to show full abstract

In this study, poly(1-butyl-3-vinylimidazolium bromide) (PBVIm-Br) was grafted onto the poly(vinyl chloride) (PVC) membrane surface via a 2-step atom transfer radical polymerization (ATRP) reaction. Poly(2-hydroxyethylmethacrylate) (PHEMA) was grafted onto the membrane surface by aqueous ATRP reaction; then, BVIm-Br was introduced onto the surface of the PHEMA-modified PVC membrane through traditional ATRP reaction. The analysis of surface chemistry confirmed the successful grafting of PHEMA and PBVIm-Br on PVC membrane surface, and the grafting density (GD) of PBVIm-Br gradually increased as the grafting time was prolonged. The modified membrane exhibited a positive charge and significantly enhanced surface hydrophilicity. The static water contact angle of the membrane surface decreased from 92.3° to 51.6° as the GD of the PBVIm-Br brushes increased. Filtration experiments indicated that the water flux of the modified membrane increased with increasing GD, and their recovered fluxes were more than twice than the original. In addition, the total fouling ratio of the membranes decreased from 89% in M0 to 67% in M5, and most of the fouling was reversible as the GD of PBVIm-Br brushes increased. These results indicated that the positive charged poly(ionic liquid) brushes featuring hydrophilic properties would have potential applications in membrane separation.

Keywords: atom transfer; surface; membrane surface; membrane; vinyl chloride; poly vinyl

Journal Title: Polymers for Advanced Technologies
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.