LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frontal weld lines in injection‐molded short fiber‐reinforced PBT: Extensive microstructure characterization for mechanical performance evaluation

Photo from wikipedia

Different factors contribute to the weakness of weld lines (WLs) induced by injection molding such as unsuitable fiber orientation (FO), incomplete polymer matrix diffusion, voids and V-notches. This study aims… Click to show full abstract

Different factors contribute to the weakness of weld lines (WLs) induced by injection molding such as unsuitable fiber orientation (FO), incomplete polymer matrix diffusion, voids and V-notches. This study aims to characterize the contribution of each factor on the weakness of frontal WLs in a short glass fiber-reinforced polybutylene-terephthalate characterized by extensive X-ray computed tomography and mechanical tensile testing assisted with digital image correlation. A reduction of 50% of the stress at break and almost 40% of the strain at break is observed despite the complete matrix healing at the WL interface and the absence of V-notches. Frontal WLs induce a FO gradient starting 2 to 3 mm before the WL plane. The fibers in the WL region mainly orient in transverse-to-flow and thickness direction. This FO gradient localizes the deformations, which leads to failure at a strength near to the one of the unreinforced variant. Voids formation in frontal WLs seems to be driven by large gradients of FO and subsequent anisotropic shrinkage. In addition, this shrinkage behavior at the WL causes an increase of thickness. By applying higher packing pressures, the fibers orient more in flow direction at the core of the WL, leading to a higher tensile strength and a lower content of voids. Finally, we can conclude that the FO is the dominant factor controlling the mechanical performance in frontal WLs.

Keywords: weld lines; fiber reinforced; injection; frontal wls; mechanical performance

Journal Title: Polymer Composites
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.