LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of polycaprolactone − poly‐D,L‐lactide copolymer as biomaterial for breast tissue engineering

Photo by roberto_sorin from unsplash

The potential of the copolymer polycaprolactone-co-poly-d,l-lactic acid (PCLLA) as a biomaterial for scaffold-based therapy for breast tissue engineering applications was assessed. First, the synthesized PCLLA was evaluated for its processability… Click to show full abstract

The potential of the copolymer polycaprolactone-co-poly-d,l-lactic acid (PCLLA) as a biomaterial for scaffold-based therapy for breast tissue engineering applications was assessed. First, the synthesized PCLLA was evaluated for its processability by means of additive manufacturing (AM). We found that the synthesized PCLLA could be fabricated into scaffolds with an overall gross morphology and porosity similar to that of polycaprolactone. The PCLLA scaffolds possessed a compressive Young's modulus (ca 46 kPa) similar to that of native breast (0.5 − 25 kPa), but lacked thermal stability and underwent thermal degradation during the fabrication process. The PCLLA scaffolds underwent rapid degradation in vitro which was characterized by loss of the scaffolds' mechanical integrity and a drastic decrease in mass-average molar mass (Mw) and number-average molar mass (Mn) after 4 weeks of immersion in phosphate buffer solution maintained at 37 °C. The tin-catalysed PCLLA scaffold was also found to have cytotoxic effects on cells. Although the initial mechanical properties of the PCLLA scaffolds generally showed potential for applications in breast tissue regeneration, the thermal stability of the copolymer for AM processes, biocompatibility towards cells and degradation rate is not satisfactory at this stage. Therefore, we conclude that research efforts should be geared towards fine-tuning the copolymer synthesizing methods. © 2016 Society of Chemical Industry

Keywords: pclla; breast tissue; polycaprolactone; copolymer

Journal Title: Polymer International
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.