Highly swellable hydrogels were produced by crosslinking of high molecular weight carboxymethylated chitosan (CmCHT) with poly(ethylene glycol) (PEG) oligomers. The hydrogel swelling capacity could be controlled via the crosslinking density… Click to show full abstract
Highly swellable hydrogels were produced by crosslinking of high molecular weight carboxymethylated chitosan (CmCHT) with poly(ethylene glycol) (PEG) oligomers. The hydrogel swelling capacity could be controlled via the crosslinking density and ranged from 900% to 5600%. The hydrogels showed good homogeneity with a high interconnected porosity in the swollen state and with nanodomains rich in CmCHT and others rich in PEG diglycidyl ether. Oscillatory frequency sweep analysis showed a storage modulus of 27 kPa for the hydrogel with the highest crosslinking density, which together with the exhibited enzyme degradability with lysozyme at 59 days indicate that these hydrogels have potential use in delivery systems or soft tissue regeneration. © 2017 Society of Chemical Industry
               
Click one of the above tabs to view related content.