LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of spliced peptides in pancreatic islets uncovers errors leading to false assignments

Photo by bermixstudio from unsplash

Proteasomal spliced peptides (PSPs) have been identified in the class I major histocompatibility complex (MHC) peptidomes of several tumors and have emerged as novel neoantigens that can stimulate highly specific… Click to show full abstract

Proteasomal spliced peptides (PSPs) have been identified in the class I major histocompatibility complex (MHC) peptidomes of several tumors and have emerged as novel neoantigens that can stimulate highly specific T cells. Much debate has surrounded the percentage of PSPs in the immunopeptidome; reported numbers have ranged from <1–5% to 12–45%. Recently, our laboratory demonstrated in nonobese diabetic (NOD) mice that hybrid insulin peptides (HIPs), a special class of spliced peptides, are formed during insulin granule degradation in crinosomes of the pancreatic β cells and that modified peptides comprised a significant source of false positive HIP assignments. Herein, this study is extended to crinosomes isolated from other mouse strains and to two recent MHC class I studies, to see if modified peptides explained discrepancies in reported percentages of PSPs. This analysis revealed that both MHC‐I peptidomes contained many spectra erroneously assigned as PSPs. While many false positive PSPs did arise from modified peptides, others arose from probable data processing errors. Thus, the reported numbers of PSPs in the literature are likely elevated due to errors associated with data processing and analysis.

Keywords: identification spliced; modified peptides; peptides pancreatic; spliced peptides; islets uncovers; pancreatic islets

Journal Title: PROTEOMICS
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.