LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyclic oligomer design with de novo αβ‐proteins

Photo from wikipedia

We have previously shown that monomeric globular αβ‐proteins can be designed de novo with considerable control over topology, size, and shape. In this paper, we investigate the design of cyclic… Click to show full abstract

We have previously shown that monomeric globular αβ‐proteins can be designed de novo with considerable control over topology, size, and shape. In this paper, we investigate the design of cyclic homo‐oligomers from these starting points. We experimented with both keeping the original monomer backbones fixed during the cyclic docking and design process, and allowing the backbone of the monomer to conform to that of adjacent subunits in the homo‐oligomer. The latter flexible backbone protocol generated designs with shape complementarity approaching that of native homo‐oligomers, but experimental characterization showed that the fixed backbone designs were more stable and less aggregation prone. Designed C2 oligomers with β‐strand backbone interactions were structurally confirmed through x‐ray crystallography and small‐angle X‐ray scattering (SAXS). In contrast, C3‐C5 designed homo‐oligomers with primarily nonpolar residues at interfaces all formed a range of oligomeric states. Taken together, our results suggest that for homo‐oligomers formed from globular building blocks, improved structural specificity will be better achieved using monomers with increased shape complementarity and with more polar interfaces.

Keywords: cyclic oligomer; homo oligomers; design novo; backbone; oligomer design; design

Journal Title: Protein Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.