LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of histatin 5 modifications on antifungal activity and kinetics of proteolysis

Photo by julienlphoto from unsplash

Histatin 5 (Hst‐5) is an antimicrobial peptide with strong antifungal activity against Candida albicans, an opportunistic pathogen that is a common cause of oral thrush. The peptide is natively secreted… Click to show full abstract

Histatin 5 (Hst‐5) is an antimicrobial peptide with strong antifungal activity against Candida albicans, an opportunistic pathogen that is a common cause of oral thrush. The peptide is natively secreted by human salivary glands and shows promise as an alternative therapeutic against infections caused by C. albicans. However, Hst‐5 can be cleaved and inactivated by a family of secreted aspartic proteases (Saps) produced by C. albicans. Single‐residue substitutions can significantly affect the proteolytic resistance of Hst‐5 to Saps and its antifungal activity; the K17R substitution increases resistance to proteolysis, while the K11R substitution enhances antifungal activity. In this work, we showed that the positive effects of these two single‐residue modifications can be combined in a single peptide, K11R–K17R, with improved proteolytic resistance and antifungal activity. We also investigated the effect of additional single‐residue substitutions, with a focus on the effect of addition or removal of negatively charged residues, and found Sap‐dependent effects on degradation. Both single‐ and double‐substitutions affected the kinetics of proteolytic degradation of the intact peptide and of the fragments formed during degradation. Our results demonstrate the importance of considering proteolytic stability and not just antimicrobial activity when designing peptides for potential therapeutic applications.

Keywords: single residue; proteolysis; effects histatin; histatin modifications; antifungal activity; activity

Journal Title: Protein Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.