LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differentiating between the sequence of structural events on alternative pathways of folding of a heterodimeric protein

Photo from wikipedia

Distinguishing between competing pathways of folding of a protein, on the basis of how they differ in their progress of structure acquisition, remains an important challenge in protein folding studies.… Click to show full abstract

Distinguishing between competing pathways of folding of a protein, on the basis of how they differ in their progress of structure acquisition, remains an important challenge in protein folding studies. A previous study had shown that the heterodimeric protein, double chain monellin (dcMN) switches between alternative folding pathways upon a change in guanidine hydrochloride (GdnHCl) concentration. In the current study, the folding of dcMN has been characterized by the pulsed hydrogen exchange (HX) labeling methodology used in conjunction with mass spectrometry. Quantification of the extent to which folding intermediates accumulate and then disappear with time of folding at both low and high GdnHCl concentrations, where the folding pathways are known to be different, shows that the folding mechanism is describable by a triangular three‐state mechanism. Structural characterization of the productive folding intermediates populated on the alternative pathways has enabled the pathways to be differentiated on the basis of the progress of structure acquisition that occurs on them. The intermediates on the two pathways differ in the extent to which the α‐helix and the rest of the β‐sheet have acquired structure that is protective against HX. The major difference is, however, that β2 has not acquired any protective structure in the intermediate formed on one pathway, but it has acquired significant protective structure in the intermediate formed on the alternative pathway. Hence, the sequence of structural events is different on the two alternative pathways.

Keywords: heterodimeric protein; structure; sequence structural; alternative pathways; pathways folding

Journal Title: Protein Science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.