BACKGROUND Bottom-up and top-down forces are major components of biological control against pests in an agro-ecosystem. Understanding the multi-trophic interactions between plants and secondary consumers would help optimize pest control… Click to show full abstract
BACKGROUND Bottom-up and top-down forces are major components of biological control against pests in an agro-ecosystem. Understanding the multi-trophic interactions between plants and secondary consumers would help optimize pest control strategies. We manipulated nitrogen and/or water inputs to tomato plants (Solanum lycopersicum) to test whether these manipulations could trigger bottom-up effects on the parasitoid Necremnus tutae via host (Tuta absoluta) and/or non-host (Bemisia tabaci) exposures, and compared the control efficacy of N. tutae on T. absoluta in the presence and absence of B. tabaci. RESULTS The results showed no cascading effects of plant nitrogen and/or water inputs on N. tutae via either host or non-host exposure. The bottom-up force was mitigated by chewing or sap-feeding insect consumers at the second energy level. By contrast, the top-down force on T. absoluta from parasitoids was enhanced by an additionally provided non-host, which could produce alternative food sources extending N. tutae longevity and enhancing the fitness of its offspring. CONCLUSION Our results provided evidence for the combination of bottom-up and top-down approaches in tomato integrated pest management programs. © 2017 Society of Chemical Industry.
               
Click one of the above tabs to view related content.