LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

20-Hydroxyecdysone Enhances Immulectin-1 Mediated Immune Response against Entomogenous Fungus in Locusta migratoria.

Photo from wikipedia

BACKGROUND Entomogenous fungi are important factors in biological control, but innate immunity of insects restricts the efficiency of fungus infection. 20-hydroxyecdysone (20E) is involved in regulating the immune response of… Click to show full abstract

BACKGROUND Entomogenous fungi are important factors in biological control, but innate immunity of insects restricts the efficiency of fungus infection. 20-hydroxyecdysone (20E) is involved in regulating the immune response of insects. Our previous studies have revealed that 20E enhances the expression of antibacterial peptides in the worldwide pest, Locusta migratoria. However, the mechanism by which 20E controls innate immunity against entomogenous fungi is still unknown. RESULTS In the present study, based on the transcriptome of L. migratoria fat bodies challenged by 20E, immulectin-1 (LmIML-1) was screened and identified to be involved in modulating anti-fungal immunity. Spatio-temporal expression analysis showed LmIML-1 was highly expressed in the fifth instar nymph stage, and mainly distributed in the fat bodies and hemolymph. Both exogenous and endogenous 20E could increase the transcription of LmIML-1. In contrast, transcription of LmIML-1 did not increase when the 20E signal was blocked by RNAi of LmEcR (ecdysone receptor). The expressed recombinant protein rLmIML-1 possessed agglutination activity and promoted the encapsulation. RNAi of LmIML-1 reduced the encapsulation of hemocytes, decreased the antifungal activity of plasma against Metarhizium anisopliae, and accelerated the death of nymphs under the stress of entomogenous fungus. Meanwhile, 20E did not increase the antifungal activity with silence of LmIML-1 in L. migratoria. CONCLUSION 20E enhances antifungal immunity by activating immulectin-1 in L. migratoria. Our findings indicate a potential mechanism of 20E systematically regulating innate immune response to resist pathogens and provide a well-defined molecular target for improving biological control. This article is protected by copyright. All rights reserved.

Keywords: immunity; response; entomogenous fungus; immune response; locusta migratoria

Journal Title: Pest management science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.