LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Significant transcriptional changes in mature daughter Varroa destructor mites during infestation of different developmental stages of honeybees.

Photo from wikipedia

BACKGROUND Varroa destructor is considered a major cause of honeybee (Apis mellifera) colony losses worldwide. Although V. destructor mites exhibit preference behavior for certain honeybee lifecycle stages, the mechanism underlying… Click to show full abstract

BACKGROUND Varroa destructor is considered a major cause of honeybee (Apis mellifera) colony losses worldwide. Although V. destructor mites exhibit preference behavior for certain honeybee lifecycle stages, the mechanism underlying host finding and preference remains largely unknown. RESULTS By using a de novo transcriptome assembly strategy, we sequenced the mature daughter V. destructor mite transcriptome during infestation of different stages of honeybees (brood cells, newly emerged bees and adult bees). A total of 132,779 unigenes were obtained with an average length of 2,745 bp and N50 of 5,706 bp. About 63.1% of the transcriptome could be annotated based on sequence homology to the predatory mite Metaseiulus occidentalis proteins. Expression analysis revealed that mature daughter mites had distinct transcriptome profiles after infestation of different honeybee stages, and that the majority of the differentially expressed genes (DEGs) of mite infesting adult honeybees were down-regulated compared to that infesting the sealed brood cells. Gene Ontology and KEGG pathway enrichment analyses showed that a large number of DEGs were involved in cellular process and metabolic process, suggesting that Varroa mites undergo metabolic adjustment to accommodate the cellular, molecular and/or immune response of the honeybees. Interestingly, in adult honeybees, some mite DEGs involved in neurotransmitter biosynthesis and transport were identified and their levels of expression were validated by qPCR. CONCLUSION These results provide evidence for transcriptional reprogramming in mature daughter Varroa mites during infestation of honeybees, which may be relevant to understanding the mechanism underpinning adaptation and preference behavior of these mites for honeybees. This article is protected by copyright. All rights reserved.

Keywords: infestation different; varroa; mature daughter; varroa destructor

Journal Title: Pest management science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.