BACKGROUND The southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae), is an important emerging polyphagous pest infesting soybean in the United States, Brazil and Argentina. The indiscriminate use of synthetic insecticides… Click to show full abstract
BACKGROUND The southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae), is an important emerging polyphagous pest infesting soybean in the United States, Brazil and Argentina. The indiscriminate use of synthetic insecticides to control stinkbugs has limited the effectiveness of current management strategies. Alternatively, RNAi has emerged as a novel mode of action to control pests in an eco-friendly manner. RESULTS Here, we assessed the potential of RNAi technology by oral delivery of dsRNA for the control of N. viridula. First, ten candidate genes were tested by microinjection assay to select the best target genes for oral delivery. Seven genes resulted in more than 90% mortality after microinjection. To evaluate RNAi efficacy by oral delivery of dsRNA, five genes were tested by feeding the insects on gene-specific dsRNA mixed with an artificial diet. Significant mortality of 43% and 45% was observed after 14 days of treatment with dsαCop and dsvATPase A, respectively. To elucidate the lower RNAi efficacy via oral delivery of dsRNA, ex vivo dsRNA degradation in the saliva and the midgut juice was performed, which indicated that the reduced RNAi efficacy is accompanied by a rapid degradation of dsRNA by digestive secretions. CONCLUSION This study proves that RNAi can be triggered by orally delivered dsRNA in N. viridula and can be exploited to control this economically important pest. The reduced stability of dsRNA in saliva and midgut that was observed indicates a need to further improve RNAi efficacy, for example by use of specific formulations. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.