LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of anti-Leishmania compounds in the behavior of the sand fly vector Lutzomyia longipalpis.

Photo by pete_nuij from unsplash

BACKGROUND Leishmaniasis is an infectious parasitic disease caused by pathogens of the genus Leishmania transmitted through the bite of adult female sand flies. To reduce case numbers, it is necessary… Click to show full abstract

BACKGROUND Leishmaniasis is an infectious parasitic disease caused by pathogens of the genus Leishmania transmitted through the bite of adult female sand flies. To reduce case numbers, it is necessary to combine different control approaches, especially those aimed at the sand fly vectors. Innovative forms of control with the use of attractive sugar baits explored the fact that adult sand flies need to feed on sugars of plant origin. Leishmania parasites develop in the gut of sand flies, interacting with the sugars in the diet of adults. Recent studies have shown that sugar baits containing plant-derived compounds can reduce sand fly survival, the number of parasites per gut, and the percentage of infected sand flies. Several synthetic compounds produced from naphthoquinones and pterocarpans have anti-parasitic activity on L. amazonensis and/or L. infantum in cell culture. This work aimed to assess the inclusion of these compounds in sugar baits for blocking transmission, targeting the development of the Leishmania parasite inside the sand fly vector. RESULTS We evaluated the attractant or repellent properties of these compounds, as well as of the reference compound DEET, in sugar baits. We also observed changes in feeding preference caused by these compounds, looking for anti-feeding or stimulation of ingestion. Pterocarpanquinone L4 and pentamidine showed attractant and repellent properties, respectively. CONCLUSION Based on the effects in feeding preference and intake volume, pterocarpanquinone L6, and the pyrazole-derived compound P8 were chosen as the most promising compounds for the future development of anti-Leishmania sugar baits. This article is protected by copyright. All rights reserved.

Keywords: sugar baits; fly vector; anti leishmania; sand flies; sand; sand fly

Journal Title: Pest management science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.