LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CRISPR/Cas9 mediates efficient site-specific mutagenesis of the odorant receptor co-receptor (Orco) in the malaria vector Anopheles sinensis.

Photo from wikipedia

BACKGROUND Anopheles sinensis is the most widely distributed mosquito species and is the main transmitter of Plasmodium vivax malaria in China. Most previous research has focused on the mechanistic understanding… Click to show full abstract

BACKGROUND Anopheles sinensis is the most widely distributed mosquito species and is the main transmitter of Plasmodium vivax malaria in China. Most previous research has focused on the mechanistic understanding of biological processes in An. sinensis and novel ways of interrupting malaria transmission. However, the development of functional genomics and genetics-based vector control strategies against An. sinensis remain limited because of insufficient site-specific genome editing tools. RESULTS We report the first successful application of the CRISPR/Cas9 mediated knock-in for highly efficient, site-specific mutagenesis in An. sinensis. The EGFP marker gene driven by the 3×P3 promoter was precisely integrated into the odorant receptor co-receptor (Orco) by direct injections of Cas9 protein, double-stranded DNA donor, and Orco-gRNA. We achieved a mutation rate of 3.77%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed by PCR amplification and sequencing. The Orco mutation severely impaired mosquito sensitivity to some odors and their ability to locate and discriminate a human host. CONCLUSION Orco was confirmed as a key mediator of multiple olfactory-driven behaviors in the An. sinensis life cycle, highlighting the importance of Orco as a key molecular target for malaria control. The results also demonstrated that CRISPR/Cas9 was a simple and highly efficient genome editing technique for An. sinensis and could be used to develop genetic control tools for this vector. This article is protected by copyright. All rights reserved.

Keywords: crispr cas9; vector; site specific; receptor; sinensis

Journal Title: Pest management science
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.