BACKGROUND The bean bug Riptortus pedestris has received intense attention in recent years because of its involvement in increasing outbreaks of the staygreen syndrome in soybean (Glycine max (L.)) often… Click to show full abstract
BACKGROUND The bean bug Riptortus pedestris has received intense attention in recent years because of its involvement in increasing outbreaks of the staygreen syndrome in soybean (Glycine max (L.)) often causing almost 100% losses of soybean yield in China. However, for this pest of great economic importance, the potential current and future distribution patterns and their underlying driving factors remain unclear. RESULTS The Maxent modelling under climate, elevation and land-use (including the distribution information of Glycine max) variables showed the current potential distribution covered a vast geographic range, primarily including most parts of South, Southeast and East Asia. Under future environmental scenarios, the suitable habitat was markedly expanded. The areas to newly become highly suitable for R. pedestris were primarily located in Northeast China and West India. Five bioclimatic (BIO13, BIO08, BIO18, BIO02 and BIO07) and one land-use (C3 annual crops) predictors contributed approximately 95% to the modelling, and analyses of curve responses showed that R. pedestris preferred relatively high temperature and precipitation to a certain degree. Our results indicate that a high risk of R. pedestris outbreaks is present in parts of Asia, especially in the growing regions of soybean in China, and this risk will continue in the future. CONCLUSION The predicted distribution pattern and key regulating factors identified herein could provide a vital reference for developing policies in pest management and further alleviate the incidence of staygreen syndrome in soybean.
               
Click one of the above tabs to view related content.