BACKGROUND Insect cytochrome P450 monooxygenases play important roles in the detoxification metabolism of endogenous and exogenous compounds. Haedoxan A (HA) from Phryma leptostachya L. is a highly efficient natural pesticide… Click to show full abstract
BACKGROUND Insect cytochrome P450 monooxygenases play important roles in the detoxification metabolism of endogenous and exogenous compounds. Haedoxan A (HA) from Phryma leptostachya L. is a highly efficient natural pesticide used to control houseflies and mosquito. CYP4C21 and CYP304A1 were previously demonstrated to be transcriptionally increased in Aedes albopictus in response to HA exposure, but their involvement in HA metabolism is unknown. RESULTS Our data showed that CYP304A1 expression levels in A. albopictus were highest in third-instar larvae, and the expression level of CYP4C21 decreased significantly with the growth of instars, with the lowest occurring in the pupal stage. Compared with the control, the silencing of CYP304A1 and CYP4C21 genes by chitosan nanoparticle-mediated RNAi could deplete 58.21% and 54% of the expression of corresponding genes, respectively. The bioassay data showed that knocking down the expression of CYP304A1 increased the mortality of A. albopictus when exposed to HA at the LC30 and LC50 doses, but did not significantly increase mortality after silencing CYP4C21. Our data demonstrated that CYP304A1, but not CYP4C21, may be involved in HA detoxification. Moreover, the resistance ratio (RR) of CYP304A1 overexpressing flies was approximately 2-fold higher than that of the control line. The metabolized product of HA by CYP304A1 needs to be further confirmed by in vitro expression. CONCLUSION This finding showed that inducibility was not always linked to detoxifying capabilities, and enhanced our understanding of the molecular basis of HA metabolic detoxification in A. albopictus. This article is protected by copyright. All rights reserved.
               
Click one of the above tabs to view related content.