LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole.

Photo from wikipedia

BACKGROUND The rice leaffolder, Cnaphalocrocis medinalis (Guenée), has become an increasingly occurring pest in Asia in recent years. Chemical control remains the most efficient and primary tool for controlling this… Click to show full abstract

BACKGROUND The rice leaffolder, Cnaphalocrocis medinalis (Guenée), has become an increasingly occurring pest in Asia in recent years. Chemical control remains the most efficient and primary tool for controlling this pest. In this study, we report the resistance status of C. medinalis in China to multiple insecticides including chlorantraniliprole and the main resistance mechanism. RESULTS Significant variations among field populations of C. medinalis in their resistance to ten insecticides were observed during 2019-2022. Most of the tested field populations have developed low to moderate levels of resistance to abamectin (RR = 2.4-22.2), emamectin benzoate (RR = 1.9-40.3) and spinetoram (RR = 4.2-24.8). Some field populations have developed low resistance to chlorpyrifos (RR = 0.9-6.8). Indoxacarb, metaflumizone, methoxenozide and Bt potency against all tested populations remained similar. For diamides, significantly higher levels of resistance to chlorantraniliprole (RR = 64.9-113.7) were observed in 2022, whereas all tested field populations in 2019-2021 exhibited susceptible or moderate resistance level to chlorantraniliprole (RR = 1.3-22.1). Cross resistance between chlorantraniliprole and tetraniliprole was significant. Analysis of ryanodine receptor (RyR) mutations showed that mutation of I4712M was present in resistant populations of C. medinalis with different levels of chlorantraniliprole resistance and was the main mechanism conferring diamide resistance. Mutation of Y4621D was also detected in one tested population. Resistance management strategies for the control of C. medinalis are discussed. CONCLUSION C. medinalis has developed high level of resistance to chlorantraniliprole. RyR mutations were deemed as the mechanism. This article is protected by copyright. All rights reserved.

Keywords: cnaphalocrocis medinalis; resistance; field populations; mechanism

Journal Title: Pest management science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.