LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SDHI resistance in Pyrenophora teres f teres and molecular detection of novel double mutations in sdh genes confering high resistance.

Photo from wikipedia

BACKGROUND Net blotch (NB), caused by Pyrenophora teres f. teres (Ptt), is an important disease of barley worldwide. NB control is commonly achieved through the use of fungicide mixtures including… Click to show full abstract

BACKGROUND Net blotch (NB), caused by Pyrenophora teres f. teres (Ptt), is an important disease of barley worldwide. NB control is commonly achieved through the use of fungicide mixtures including strobilurins, triazoles and carboxamides. Succinate dehydrogenase inhibitors (SDHI) are important components of fungicide management programs of barley diseases. However, during the last growing seasons in Argentina, barley fields sprayed with mixtures containing SDHI fungicides have shown failures in NB control. Here, we report the isolation and characterization of Argentine Ptt strains resistant to SDHI fungicides. RESULTS Compared against a sensitive (wild type) reference strain collected in 2008, all 21 Ptt isolates collected in 2021 exhibited resistance to pydiflumetofen and fluxapyroxad both in vitro and in vivo. Concordantly, all of them presented target-site mutations in any of the sdhB, sdhC and sdhD genes. Although the mutations detected have been previously reported in other parts of the world, this study documents for the first time the occurrence of double mutations in the same Ptt isolate. Specifically, the double mutation sdhC-N75S+sdhD-D145G confers high resistance to SDHI fungicides, while the double mutations sdhB-H277Y+sdhC-N75S and sdhB-H277Y+sdhC-H134R confer moderate levels of resistance in Ptt. CONCLUSIONS SDHI-resistance in Argentine Ptt populations is expected to increase. These findings emphasize the urgent need to perform a wider survey and a more frequent monitoring of SDHI sensitivity of Ptt populations and to develop and implement effective anti-resistance tactics. This article is protected by copyright. All rights reserved.

Keywords: ptt; double mutations; resistance; high resistance; teres teres; pyrenophora teres

Journal Title: Pest management science
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.