LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Retracted: Ganoderic Acid A exerts the cytoprotection against hypoxia‐triggered impairment in PC12 cells via elevating microRNA‐153

Photo by art_almighty from unsplash

Ganoderic Acid A (GAA) is often applied for healing cardiovascular and cerebrovascular ailments, but the influences in cerebral ischemia injury are still hazy. The research delved into the functions of… Click to show full abstract

Ganoderic Acid A (GAA) is often applied for healing cardiovascular and cerebrovascular ailments, but the influences in cerebral ischemia injury are still hazy. The research delved into the functions of GAA in hypoxia‐triggered impairment in PC12 cells. PC12 cells received hypoxia management for 12 hr, and subsequently, cell viability, migration, apoptosis, and correlative protein levels were assessed. After preprocessing with GAA, above cell behaviors were monitored again. The vector of microRNA (miR)‐153 inhibitor was utilized for PC12 cell transfection to further explore the functions of miR‐153 in hypoxia‐impaired cells. Pathways of phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were investigated via executing western blot for uncovering the latent mechanism. Results revealed that hypoxia disposition triggered PC12 cells impairment via restraining cell viability and migration and accelerating apoptosis. However, GAA visibly mollified hypoxia‐provoked impairment in PC12 cells. Interestingly, the enhancement of miR‐153 triggered by GAA was observed in hypoxia‐impaired PC12 cells. After miR‐153 inhibitor transfection, the protective functions of GAA in hypoxia‐impaired PC12 cells were dramatically inversed. Furthermore, GAA caused PI3K/AKT and mTOR activations via enhancement of miR‐153 in hypoxia‐impaired PC12 cells. The findings evinced that GAA exhibited the protective functions in PC12 cells against hypoxia‐evoked impairment through activating PI3K/AKT and mTOR via elevating miR‐153.

Keywords: ganoderic acid; pc12 cells; mir 153; hypoxia; impairment pc12

Journal Title: Phytotherapy Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.