LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of the Rayleigh–Gans approximation for microwave scattering by rimed snowflakes

Photo by rickyrew from unsplash

We have evaluated of the applicability of the Rayleigh–Gans (RGA) and Self-Similar Rayleigh–Gans (SSRGA) approximations for microwave scattering by rimed snowflakes. This study extends previous findings that showed that, for… Click to show full abstract

We have evaluated of the applicability of the Rayleigh–Gans (RGA) and Self-Similar Rayleigh–Gans (SSRGA) approximations for microwave scattering by rimed snowflakes. This study extends previous findings that showed that, for unrimed snowflakes, the RGA is in good agreement with the discrete dipole approximation (DDA), which we used as a reference method. When riming is introduced, the RGA-derived scattering properties of individual snowflakes deviate significantly — up to 20–25 dB for the backscattering cross section at the W-band — from the corresponding DDA results. In contrast, the average scattering properties given by RGA are in good agreement with DDA for all but the most heavily rimed snowflakes: the mean bias in the backscattering cross section rarely exceeds 1 dB for light and moderate riming. We also found that an adjustment that accounts for the nonspherical shapes of the ice crystals can help eliminate a small constant bias found in RGA in earlier studies. The SSRGA approximates the RGA results with good accuracy at all degrees of riming, indicating that it, too, can be used with up to moderately rimed snowflakes.

Keywords: evaluation rayleigh; scattering rimed; microwave scattering; rimed snowflakes; gans approximation; rayleigh gans

Journal Title: Quarterly Journal of the Royal Meteorological Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.